
1

ECE 372 – Microcontroller Design

Interrupts

ECE 372 – Microcontroller Design
Interrupts

void _ISR _T1Interrupt(void)
{
 IFS0bits.T1IF = 0;

 LATB ^= ((0x1000)<<(7-ledToToggle));
}

…
IFS0bits.T1IF = 0;
IEC0bits.T1IE = 1;

…
While(1) {
 …
}
…

IFS0

IFC0

PIC24F Data Memory

main function of user program

  If Timer 1 interrupt is enable (IEC0bits.T1IE) and the
Timer 1 interrupt flag is set (IFS0bits.T1IF),
  Stop current execution of main function
  Call Timer 1 interrupt service routine

  _ISR _T1Interrupt
  Address of ISR programmed in interrupt vector table

0x0000????

PIC24F Interrupt Vector Table

2

  PIC24F
  118 interrupts vectors
  Unique vector for each

possible interrupt
  Compiler support for

defining ISR for all
possible interrupt using
interrupt name

ECE 372 – Microcontroller Design
Interrupts

ECE 372 – Microcontroller Design
Interrupts

IF&IE == 1

Main SW Execution

Save
Context

Execute ISR

1

2

3 4
Restore
Context

5

Main SW Execution
6

Execution Timeline

  Interrupt Execution Timeline
  Interrupts are checked every execution cycle
  Interrupt service will save restore the execution context of the main

execution loop at the begin and end of ISR execution
  Saves all working registers and program counter
  Automatically handled by compiler

3

  Microchip Compiler for PIC24 Support
  Interrupts can be defined primarily in two ways
  Option 1 (direct/verbose method)

  Option 2 (using #defines in p24fj64ga002.h)

  Compiler has defined names for

ECE 372 – Microcontroller Design
Defining Interrupts

void _ISR _T1Interrupt(void)
{
 // interrupt code goes here
}

void __attribute__((interrupt)) _CNInterrupt(void)
{
 // interrupt code goes here
}

  Microchip Compiler for PIC24 Support
  Compiler has defined names for all interrupts

  Example: _T1Interrupt : Timer 1
  Example: _CNInterrupt : Change Notification Interrupt

ECE 372 – Microcontroller Design
Defining Interrupts

4

  Guidelines for ISRs
  Declare ISRs with no parameters
  Do NOT call functions
  Do NOT call main code or functions
  Do NOT call ISRs from the main code
  ISR should be a short as possible and return as quickly as possible
  ISR MUST reset interrupt flag

  What happens is we don’t?
  Variables shared between ISR and main code MUST be declare at

volatile
  volatile keyword in C indicates to compiler not to store value within

register, but to always write value back to memory
  Ensures consistent value is maintained between ISR and main code

  i.e., value is not stored in register that will be saved and restored during call
to the ISR

ECE 372 – Microcontroller Design
Defining Interrupts

