
1

ECE 372 – Microcontroller Design

Interrupts

ECE 372 – Microcontroller Design
Interrupts

void _ISR _T1Interrupt(void)
{
 IFS0bits.T1IF = 0;

 LATB ^= ((0x1000)<<(7-ledToToggle));
}

…
IFS0bits.T1IF = 0;
IEC0bits.T1IE = 1;

…
While(1) {
 …
}
…

IFS0

IFC0

PIC24F Data Memory

main function of user program

  If Timer 1 interrupt is enable (IEC0bits.T1IE) and the
Timer 1 interrupt flag is set (IFS0bits.T1IF),
  Stop current execution of main function
  Call Timer 1 interrupt service routine

  _ISR _T1Interrupt
  Address of ISR programmed in interrupt vector table

0x0000????

PIC24F Interrupt Vector Table

2

  PIC24F
  118 interrupts vectors
  Unique vector for each

possible interrupt
  Compiler support for

defining ISR for all
possible interrupt using
interrupt name

ECE 372 – Microcontroller Design
Interrupts

ECE 372 – Microcontroller Design
Interrupts

IF&IE == 1

Main SW Execution

Save
Context

Execute ISR

1

2

3 4
Restore
Context

5

Main SW Execution
6

Execution Timeline

  Interrupt Execution Timeline
  Interrupts are checked every execution cycle
  Interrupt service will save restore the execution context of the main

execution loop at the begin and end of ISR execution
  Saves all working registers and program counter
  Automatically handled by compiler

3

  Microchip Compiler for PIC24 Support
  Interrupts can be defined primarily in two ways
  Option 1 (direct/verbose method)

  Option 2 (using #defines in p24fj64ga002.h)

  Compiler has defined names for

ECE 372 – Microcontroller Design
Defining Interrupts

void _ISR _T1Interrupt(void)
{
 // interrupt code goes here
}

void __attribute__((interrupt)) _CNInterrupt(void)
{
 // interrupt code goes here
}

  Microchip Compiler for PIC24 Support
  Compiler has defined names for all interrupts

  Example: _T1Interrupt : Timer 1
  Example: _CNInterrupt : Change Notification Interrupt

ECE 372 – Microcontroller Design
Defining Interrupts

4

  Guidelines for ISRs
  Declare ISRs with no parameters
  Do NOT call functions
  Do NOT call main code or functions
  Do NOT call ISRs from the main code
  ISR should be a short as possible and return as quickly as possible
  ISR MUST reset interrupt flag

  What happens is we don’t?
  Variables shared between ISR and main code MUST be declare at

volatile
  volatile keyword in C indicates to compiler not to store value within

register, but to always write value back to memory
  Ensures consistent value is maintained between ISR and main code

  i.e., value is not stored in register that will be saved and restored during call
to the ISR

ECE 372 – Microcontroller Design
Defining Interrupts

